Cargando…

Male New Zealand robins (Petroica longipes) cater to their mate’s desire when sharing food in the wild

In many species that have bi-parental care, food-sharing males provide vital nutritional resources to their mates during reproduction. However, it is currently unknown whether females can signal specific desires to their mates, or if males can cater to female desire in the wild. Here we investigate...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaw, Rachael C., MacKinlay, Regan D., Clayton, Nicola S., Burns, Kevin C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429848/
https://www.ncbi.nlm.nih.gov/pubmed/28420866
http://dx.doi.org/10.1038/s41598-017-00879-1
Descripción
Sumario:In many species that have bi-parental care, food-sharing males provide vital nutritional resources to their mates during reproduction. However, it is currently unknown whether females can signal specific desires to their mates, or if males can cater to female desire in the wild. Here we investigate whether and how wild male North Island robins (Petroica longipes) respond to changes in their mates’ desires and nutritional need when sharing food. We demonstrate that wild female robins’ desire for particular foods changes over short time periods; when given the choice between two types of insect larvae, females prefer the type they have not recently eaten. In our experiments, wild male robins preferentially shared the larvae type that their mate was most likely to desire and also increased the quantity of food shared if she had begun incubating. Males catered to their mates’ desire when female behaviour was the only cue available to guide their choices. This is the first evidence that females may behaviourally communicate their specific food desires to their mates, enabling males to cater to fine-scale changes in their mates’ nutritional requirements in the wild. Such a simple behaviour-reading mechanism has the potential to be widespread among other food-sharing species.