Cargando…

Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetory

BACKGROUND: The accuracy of vector flow mapping (VFM) was investigated in comparison to stereo particle image velocimetry (stereo-PIV) measurements using a left ventricular phantom. VFM is an echocardiographic approach to visualizing two-dimensional flow dynamics by estimating the azimuthal componen...

Descripción completa

Detalles Bibliográficos
Autores principales: Asami, Rei, Tanaka, Tomohiko, Kawabata, Ken-ichi, Hashiba, Kunio, Okada, Takashi, Nishiyama, Tomohide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429903/
https://www.ncbi.nlm.nih.gov/pubmed/27848215
http://dx.doi.org/10.1007/s12574-016-0321-5
Descripción
Sumario:BACKGROUND: The accuracy of vector flow mapping (VFM) was investigated in comparison to stereo particle image velocimetry (stereo-PIV) measurements using a left ventricular phantom. VFM is an echocardiographic approach to visualizing two-dimensional flow dynamics by estimating the azimuthal component of flow from the mass-conservation equation. VFM provides means of visualizing cardiac flow, but there has not been a study that compared the flow estimated by VFM to the flow data acquired by other methods. METHODS: A reproducible three-dimensional cardiac blood flow was created in an optically and acoustically transparent left-ventricle phantom, that allowed color-flow mapping (CFM) data and stereo-PIV to be simultaneously acquired on the same plane. A VFM algorithm was applied to the CFM data, and the resulting VFM estimation and stereo-PIV data were compared to evaluate the accuracy of VFM. RESULTS: The velocity fields acquired by VFM and stereo-PIV were in excellent agreement in terms of the principle flow features and time-course transitions of the main vortex characteristics, i.e., the overall correlation of VFM and PIV vectors was R = 0.87 (p < 0.0001). The accuracy of VFM was suggested to be influenced by both CFM signal resolution and the three-dimensional flow, which violated the algorithm’s assumption of planar flow. Statistical analysis of the vectors revealed a standard deviation of discrepancy averaging at 4.5% over the CFM velocity range for one cardiac cycle, and that value fluctuated up to 10% depending on the phase of the cardiac cycle. CONCLUSIONS: VFM provided fairly accurate two-dimensional-flow information on cardio-hemodynamics. These findings on VFM accuracy provide the basis for VFM-based diagnosis.