Cargando…
Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions
Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging economies. Modeling potential distributions of invasive weeds can prioritize locations for monitoring and control efforts, increasing management efficiency. Forecasts of invasion risk at regional to continental sca...
Autores principales: | Truong, Tuyet T. A., Hardy, Giles E. St. J., Andrew, Margaret E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430062/ https://www.ncbi.nlm.nih.gov/pubmed/28555147 http://dx.doi.org/10.3389/fpls.2017.00770 |
Ejemplares similares
-
Dynamic monitoring of maize grain quality based on remote sensing data
por: Sun, Weiwei, et al.
Publicado: (2023) -
Machine learning approach to estimate soil matric potential in the plant root zone based on remote sensing data
por: Maia, Rodrigo Filev, et al.
Publicado: (2022) -
Wheat yield estimation using remote sensing data based on machine learning approaches
por: Cheng, Enhui, et al.
Publicado: (2022) -
Estimation of wheat tiller density using remote sensing data and machine learning methods
por: Hu, Jinkang, et al.
Publicado: (2022) -
Mapping an ancient city with a century of remotely sensed data
por: Stott, David, et al.
Publicado: (2018)