Cargando…

Cortical dynamics of disfluency in adults who stutter

Stuttering is a disorder of speech production whose origins have been traced to the central nervous system. One of the factors that may underlie stuttering is aberrant neural miscommunication within the speech motor network. It is thus argued that disfluency (any interruption in the forward flow of...

Descripción completa

Detalles Bibliográficos
Autores principales: Sengupta, Ranit, Shah, Shalin, Loucks, Torrey M. J., Pelczarski, Kristin, Scott Yaruss, J., Gore, Katie, Nasir, Sazzad M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430117/
https://www.ncbi.nlm.nih.gov/pubmed/28483857
http://dx.doi.org/10.14814/phy2.13194
Descripción
Sumario:Stuttering is a disorder of speech production whose origins have been traced to the central nervous system. One of the factors that may underlie stuttering is aberrant neural miscommunication within the speech motor network. It is thus argued that disfluency (any interruption in the forward flow of speech) in adults who stutter (AWS) could be associated with anomalous cortical dynamics. Aberrant brain activity has been demonstrated in AWS in the absence of overt disfluency, but recording neural activity during disfluency is more challenging. The paradigm adopted here took an important step that involved overt reading of long and complex speech tokens under continuous EEG recording. Anomalies in cortical dynamics preceding disfluency were assessed by subtracting out neural activity for fluent utterances from their disfluent counterparts. Differences in EEG spectral power involving alpha, beta, and gamma bands, as well as anomalies in phase‐coherence involving the gamma band, were observed prior to the production of the disfluent utterances. These findings provide novel evidence for compromised cortical dynamics that directly precede disfluency in AWS.