Cargando…

Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women

Standardized approaches to assess human energy expenditure (EE) are well defined at rest and at moderate to high‐intensity exercise, but not at light intensity physical activities energetically comparable with those of daily life (i.e., 1.5–4 times the resting EE, i.e., 1.5–4 METs). Our aim was to v...

Descripción completa

Detalles Bibliográficos
Autores principales: Fares, Elie‐Jacques, Isacco, Laurie, Monnard, Cathriona R., Miles‐Chan, Jennifer L., Montani, Jean‐Pierre, Schutz, Yves, Dulloo, Abdul G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430120/
https://www.ncbi.nlm.nih.gov/pubmed/28507164
http://dx.doi.org/10.14814/phy2.13233
_version_ 1783236165809209344
author Fares, Elie‐Jacques
Isacco, Laurie
Monnard, Cathriona R.
Miles‐Chan, Jennifer L.
Montani, Jean‐Pierre
Schutz, Yves
Dulloo, Abdul G.
author_facet Fares, Elie‐Jacques
Isacco, Laurie
Monnard, Cathriona R.
Miles‐Chan, Jennifer L.
Montani, Jean‐Pierre
Schutz, Yves
Dulloo, Abdul G.
author_sort Fares, Elie‐Jacques
collection PubMed
description Standardized approaches to assess human energy expenditure (EE) are well defined at rest and at moderate to high‐intensity exercise, but not at light intensity physical activities energetically comparable with those of daily life (i.e., 1.5–4 times the resting EE, i.e., 1.5–4 METs). Our aim was to validate a graded exercise test for assessing the energy cost of low‐intensity dynamic work in physically inactive humans, that is, those who habitually do not meet the guidelines for moderate‐to‐vigorous aerobic physical activity levels. In healthy and inactive young men and women (n = 55; aged 18–32 years), EE was assessed in the overnight‐fasted state by indirect calorimetry at rest and during graded cycling between 5 and 50W for 5 min at each power output on a bicycle ergometer. Repeatability was investigated on three separate days, and the effect of cadence was investigated in the range of 40–90 rpm. Within the low power range of cycling, all subjects perceived the exercise test as “light” on the Borg scale, the preferred cadence being 60 rpm. A strong linearity of the EE‐power relationship was observed between 10 and 50 W for each individual (r > 0.98), and the calculation of delta efficiency (DE) from the regression slope indicated that DE was similar in men and women (~29%). DE showed modest inter‐individual variability with a coefficient of variation (CV) of 11%, and a low intra‐individual variability with a CV of ~ 5%. No habituation or learning effect was observed in DE across days. In conclusion, the assessment of the efficiency of low power cycling by linear regression – and conducted within the range of EE observed for low‐intensity movements of everyday life (1.5–4 METs) – extends the capacity for metabolic phenotyping in the inactive population.
format Online
Article
Text
id pubmed-5430120
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-54301202017-05-17 Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women Fares, Elie‐Jacques Isacco, Laurie Monnard, Cathriona R. Miles‐Chan, Jennifer L. Montani, Jean‐Pierre Schutz, Yves Dulloo, Abdul G. Physiol Rep Original Research Standardized approaches to assess human energy expenditure (EE) are well defined at rest and at moderate to high‐intensity exercise, but not at light intensity physical activities energetically comparable with those of daily life (i.e., 1.5–4 times the resting EE, i.e., 1.5–4 METs). Our aim was to validate a graded exercise test for assessing the energy cost of low‐intensity dynamic work in physically inactive humans, that is, those who habitually do not meet the guidelines for moderate‐to‐vigorous aerobic physical activity levels. In healthy and inactive young men and women (n = 55; aged 18–32 years), EE was assessed in the overnight‐fasted state by indirect calorimetry at rest and during graded cycling between 5 and 50W for 5 min at each power output on a bicycle ergometer. Repeatability was investigated on three separate days, and the effect of cadence was investigated in the range of 40–90 rpm. Within the low power range of cycling, all subjects perceived the exercise test as “light” on the Borg scale, the preferred cadence being 60 rpm. A strong linearity of the EE‐power relationship was observed between 10 and 50 W for each individual (r > 0.98), and the calculation of delta efficiency (DE) from the regression slope indicated that DE was similar in men and women (~29%). DE showed modest inter‐individual variability with a coefficient of variation (CV) of 11%, and a low intra‐individual variability with a CV of ~ 5%. No habituation or learning effect was observed in DE across days. In conclusion, the assessment of the efficiency of low power cycling by linear regression – and conducted within the range of EE observed for low‐intensity movements of everyday life (1.5–4 METs) – extends the capacity for metabolic phenotyping in the inactive population. John Wiley and Sons Inc. 2017-05-14 /pmc/articles/PMC5430120/ /pubmed/28507164 http://dx.doi.org/10.14814/phy2.13233 Text en © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Fares, Elie‐Jacques
Isacco, Laurie
Monnard, Cathriona R.
Miles‐Chan, Jennifer L.
Montani, Jean‐Pierre
Schutz, Yves
Dulloo, Abdul G.
Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
title Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
title_full Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
title_fullStr Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
title_full_unstemmed Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
title_short Reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
title_sort reliability of low‐power cycling efficiency in energy expenditure phenotyping of inactive men and women
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430120/
https://www.ncbi.nlm.nih.gov/pubmed/28507164
http://dx.doi.org/10.14814/phy2.13233
work_keys_str_mv AT fareseliejacques reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen
AT isaccolaurie reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen
AT monnardcathrionar reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen
AT mileschanjenniferl reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen
AT montanijeanpierre reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen
AT schutzyves reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen
AT dullooabdulg reliabilityoflowpowercyclingefficiencyinenergyexpenditurephenotypingofinactivemenandwomen