Cargando…
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
In recent years, many automatic brain structure segmentation methods have been proposed. However, these methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not been evaluated. Here, we analyze the effect of multiple sclerosis (MS) lesions on three...
Autores principales: | González-Villà, Sandra, Valverde, Sergi, Cabezas, Mariano, Pareto, Deborah, Vilanova, Joan C., Ramió-Torrentà, Lluís, Rovira, Àlex, Oliver, Arnau, Lladó, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430150/ https://www.ncbi.nlm.nih.gov/pubmed/28540179 http://dx.doi.org/10.1016/j.nicl.2017.05.003 |
Ejemplares similares
-
Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling
por: Valverde, Sergi, et al.
Publicado: (2015) -
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
por: Valverde, Sergi, et al.
Publicado: (2018) -
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2019) -
A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2017) -
Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction
por: Kushibar, Kaisar, et al.
Publicado: (2019)