Cargando…

Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae)

BACKGROUND: Fruits of wild species of the genus Physalis are consumed as food and calyces and leaves are used in traditional medicine. The phenolic composition of the species of this genus have been scarcely studied. To contribute to a better knowledge for the use of all the potential of these wild...

Descripción completa

Detalles Bibliográficos
Autores principales: Medina-Medrano, José Roberto, Almaraz-Abarca, Norma, González-Elizondo, M. Socorro, Uribe-Soto, José Natividad, González-Valdez, Laura Silvia, Herrera-Arrieta, Yolanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430310/
https://www.ncbi.nlm.nih.gov/pubmed/28510833
http://dx.doi.org/10.1186/s40529-015-0101-y
Descripción
Sumario:BACKGROUND: Fruits of wild species of the genus Physalis are consumed as food and calyces and leaves are used in traditional medicine. The phenolic composition of the species of this genus have been scarcely studied. To contribute to a better knowledge for the use of all the potential of these wild species of plants, leaves, fruits, and calyces of five wild species of the genus were analyzed for their phenolic composition and antioxidant properties. RESULTS: Important tissue- and species-dependent variations were found. Calyces of Physalis subulata showed the highest contents of phenolics (176.58 mg of gallic acid equivalents/g dry tissue), flavonoids (39.63 mg/g dry tissue), and phenolic acids (50.57 mg of quercitrin equivalents/g dry tissue), and its leaves displayed the highest total antioxidant capacity (3.59 mg of ascorbic acid equivalents/mL) and one of the highest reduction powers (0.54 µg of ascorbic acid equivalents/mL). A high performance liquid chromatography with photodiode array detection analysis revealed a total of 28 phenolic compounds in foliar tissues (mainly kaempferol-3-O-glycosides), 16 in fruits (mainly phenolic acids), and 16 in calyces (mainly kaempferol-3-O-glycosides); the profiles of these compounds in the three types of tissue were species-specific. CONCLUSIONS: The studied species of Physalis are important sources of phenolics with relevant antioxidant activity. The current results indicate that phenolic profiles are valuable specific chemical markers and can be relevant as food tracing and authenticity indicators for plant-based preparations involving species of Physalis.