Cargando…

Atom size electron vortex beams with selectable orbital angular momentum

The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as t...

Descripción completa

Detalles Bibliográficos
Autores principales: Pohl, Darius, Schneider, Sebastian, Zeiger, Paul, Rusz, Ján, Tiemeijer, Peter, Lazar, Sorin, Nielsch, Kornelius, Rellinghaus, Bernd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430437/
https://www.ncbi.nlm.nih.gov/pubmed/28424470
http://dx.doi.org/10.1038/s41598-017-01077-9
_version_ 1783236215996153856
author Pohl, Darius
Schneider, Sebastian
Zeiger, Paul
Rusz, Ján
Tiemeijer, Peter
Lazar, Sorin
Nielsch, Kornelius
Rellinghaus, Bernd
author_facet Pohl, Darius
Schneider, Sebastian
Zeiger, Paul
Rusz, Ján
Tiemeijer, Peter
Lazar, Sorin
Nielsch, Kornelius
Rellinghaus, Bernd
author_sort Pohl, Darius
collection PubMed
description The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as the needed experimental tool. To this end, we present a reliable and robust electron-optical setup that generates and controls user-selectable single state electron vortex beams with defined orbital angular momenta. Our set-up is based on a standard high-resolution scanning TEM with probe aberration corrector, to which we added a vortex generating fork aperture and a miniaturized aperture for vortex selection. We demonstrate that atom size probes can be formed from these electron vortices and that they can be used for atomic resolution structural and spectroscopic imaging – both of which are prerequisites for future atomic EMCD investigations.
format Online
Article
Text
id pubmed-5430437
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54304372017-05-15 Atom size electron vortex beams with selectable orbital angular momentum Pohl, Darius Schneider, Sebastian Zeiger, Paul Rusz, Ján Tiemeijer, Peter Lazar, Sorin Nielsch, Kornelius Rellinghaus, Bernd Sci Rep Article The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as the needed experimental tool. To this end, we present a reliable and robust electron-optical setup that generates and controls user-selectable single state electron vortex beams with defined orbital angular momenta. Our set-up is based on a standard high-resolution scanning TEM with probe aberration corrector, to which we added a vortex generating fork aperture and a miniaturized aperture for vortex selection. We demonstrate that atom size probes can be formed from these electron vortices and that they can be used for atomic resolution structural and spectroscopic imaging – both of which are prerequisites for future atomic EMCD investigations. Nature Publishing Group UK 2017-04-19 /pmc/articles/PMC5430437/ /pubmed/28424470 http://dx.doi.org/10.1038/s41598-017-01077-9 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Pohl, Darius
Schneider, Sebastian
Zeiger, Paul
Rusz, Ján
Tiemeijer, Peter
Lazar, Sorin
Nielsch, Kornelius
Rellinghaus, Bernd
Atom size electron vortex beams with selectable orbital angular momentum
title Atom size electron vortex beams with selectable orbital angular momentum
title_full Atom size electron vortex beams with selectable orbital angular momentum
title_fullStr Atom size electron vortex beams with selectable orbital angular momentum
title_full_unstemmed Atom size electron vortex beams with selectable orbital angular momentum
title_short Atom size electron vortex beams with selectable orbital angular momentum
title_sort atom size electron vortex beams with selectable orbital angular momentum
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430437/
https://www.ncbi.nlm.nih.gov/pubmed/28424470
http://dx.doi.org/10.1038/s41598-017-01077-9
work_keys_str_mv AT pohldarius atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT schneidersebastian atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT zeigerpaul atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT ruszjan atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT tiemeijerpeter atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT lazarsorin atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT nielschkornelius atomsizeelectronvortexbeamswithselectableorbitalangularmomentum
AT rellinghausbernd atomsizeelectronvortexbeamswithselectableorbitalangularmomentum