Cargando…

Temperature warming strengthens the mutualism between ghost ants and invasive mealybugs

Although the exogenous forces that directly affect the mutualisms between ants and honeydew-producing hemipterans have been well documented, few studies have been focused on the impacts of environmental warming on ant-hemipteran interactions. Here, we investigated how temperature warming affects the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Aiming, Qu, Xiaobin, Shan, Lifan, Wang, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430489/
https://www.ncbi.nlm.nih.gov/pubmed/28424508
http://dx.doi.org/10.1038/s41598-017-01137-0
Descripción
Sumario:Although the exogenous forces that directly affect the mutualisms between ants and honeydew-producing hemipterans have been well documented, few studies have been focused on the impacts of environmental warming on ant-hemipteran interactions. Here, we investigated how temperature warming affects the mutualism between ghost ant Tapinoma melanocephalum and invasive mealybug Phenacoccus solenopsis by experimental manipulation of temperature. We found that higher temperatures have significant direct effects on the growth rate of mealybug colony, and the positive effect of ant tending on mealybug colony growth is temperature-dependent. Honeydew excretion by mealybugs was affected by ant tending and temperature warming, and was significantly increased under higher temperature. The effect of ant tending on percentage parasitism was also influenced by temperature warming. Ant performance including tending level, aggression, activity, and honeydew consumption was enhanced by temperature warming, which may provide superior protection to the mealybugs. Our results show that ghost ant-mealybug mutualism is strengthened in a warmer environment. These findings may facilitate the prediction of how each partner in the ant-hemipteran-enemy interactions responds to increasing temperature.