Cargando…

Temporal dynamics of saccades explained by a self-paced process

Sensory organs are thought to sample the environment rhythmically thereby providing periodic perceptual input. Whisking and sniffing are governed by oscillators which impose rhythms on the motor-control of sensory acquisition and consequently on sensory input. Saccadic eye movements are the main vis...

Descripción completa

Detalles Bibliográficos
Autores principales: Amit, Roy, Abeles, Dekel, Bar-Gad, Izhar, Yuval-Greenberg, Shlomit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430543/
https://www.ncbi.nlm.nih.gov/pubmed/28428540
http://dx.doi.org/10.1038/s41598-017-00881-7
Descripción
Sumario:Sensory organs are thought to sample the environment rhythmically thereby providing periodic perceptual input. Whisking and sniffing are governed by oscillators which impose rhythms on the motor-control of sensory acquisition and consequently on sensory input. Saccadic eye movements are the main visual sampling mechanism in primates, and were suggested to constitute part of such a rhythmic exploration system. In this study we characterized saccadic rhythmicity, and examined whether it is consistent with autonomous oscillatory generator or with self-paced generation. Eye movements were tracked while observers were either free-viewing a movie or fixating a static stimulus. We inspected the temporal dynamics of exploratory and fixational saccades and quantified their first-order and high-order dependencies. Data were analyzed using methods derived from spike-train analysis, and tested against mathematical models and simulations. The findings show that saccade timings are explained by first-order dependencies, specifically by their refractory period. Saccade-timings are inconsistent with an autonomous pace-maker but are consistent with a “self-paced” generator, where each saccade is a link in a chain of neural processes that depend on the outcome of the saccade itself. We propose a mathematical model parsimoniously capturing various facets of saccade-timings, and suggest a possible neural mechanism producing the observed dynamics.