Cargando…

Physiological targets of salicylic acid on Artemisia aucheri BOISS as a medicinal and aromatic plant grown under in vitro drought stress

BACKGROUND: Artemisia aucheri BOISS is a medicinal and aromatic plant, which is endemic to mountainous areas of Iran and surroundings. In this study, we investigated the alleviating effects of salicylic acid (SA) pretreatment (0.01 and 0.1 mM) on A. aucheri under in vitro drought stress induced by 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbaspour, Jalil, Ehsanpour, Ali Akbar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430568/
https://www.ncbi.nlm.nih.gov/pubmed/28597449
http://dx.doi.org/10.1186/s40529-016-0154-6
Descripción
Sumario:BACKGROUND: Artemisia aucheri BOISS is a medicinal and aromatic plant, which is endemic to mountainous areas of Iran and surroundings. In this study, we investigated the alleviating effects of salicylic acid (SA) pretreatment (0.01 and 0.1 mM) on A. aucheri under in vitro drought stress induced by 2 and 4% polyethylene glycol (PEG/6000). RESULTS: Plants exposed to PEG stress showed higher levels of H(2)O(2), MDA and electrolyte leakage compared with control. While SA pretreatment decreased these parameters under PEG stress significantly. The activity of CAT, POD, APX, SOD and GR positively changed with PEG and more induction in activity of antioxidant enzymes was observed in SA-pretreated plants under PEG stress. Furthermore, ASA, GSH and their redox ratios (ASC/DHA and GSH/GSSG) enhanced with SA pretreatments. Analysis of our data revealed that MDA, DHA and H(2)O(2) were the best targets for SA under in vitro PEG treatment for A. aucheri plants. CONCLUSIONS: Salicylic acid as a signal molecule mitigated adverse effects of PEG-simulated drought stress on A. aucheri under in vitro condition by improving the activity of antioxidant enzymes. In addition, protective role of SA was also related to promotion of ascorbate–glutathione cycle.