Cargando…
Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum
BACKGROUND: Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) techniq...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430582/ https://www.ncbi.nlm.nih.gov/pubmed/28597425 http://dx.doi.org/10.1186/s40529-016-0135-9 |
Sumario: | BACKGROUND: Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp(r)), leaf hydraulic conductivity (K (leaf)), root cell hydraulic conductivity (Lp(rc)), and leaf cell hydraulic conductivity (Lp(lc)) were investigated, using hydroponically grown Pea plants. RESULTS: Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp(r) and K (leaf) were reduced by 29 %, and Lp(rc) and Lp(lc) were reduced by 20 and 29 %, respectively. CONCLUSION: Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40529-016-0135-9) contains supplementary material, which is available to authorized users. |
---|