Cargando…
Localization of Laplacian eigenvectors on random networks
In large random networks, each eigenvector of the Laplacian matrix tends to localize on a subset of network nodes having similar numbers of edges, namely, the components of each Laplacian eigenvector take relatively large values only on a particular subset of nodes whose degrees are close. Although...
Autores principales: | Hata, Shigefumi, Nakao, Hiroya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430689/ https://www.ncbi.nlm.nih.gov/pubmed/28442760 http://dx.doi.org/10.1038/s41598-017-01010-0 |
Ejemplares similares
-
Erratum: Localization of Laplacian eigenvectors on random networks
por: Hata, Shigefumi, et al.
Publicado: (2017) -
Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems
por: Biyikoğu, Türker, et al.
Publicado: (2007) -
Distinct types of eigenvector localization in networks
por: Pastor-Satorras, Romualdo, et al.
Publicado: (2016) -
Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks
por: Hata, Shigefumi, et al.
Publicado: (2014) -
Directed network Laplacians and random graph models
por: Gong, Xue, et al.
Publicado: (2021)