Cargando…

Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin

The domesticated silkworm Bombyx mori has an innate immune system, whose main effectors are the antimicrobial peptides (AMPs). Silkworm strains are commonly grouped into four geographical types (Japanese, Chinese, European and Tropical) and are generally characterised by a variable susceptibility to...

Descripción completa

Detalles Bibliográficos
Autores principales: Romoli, Ottavia, Saviane, Alessio, Bozzato, Andrea, D’Antona, Paola, Tettamanti, Gianluca, Squartini, Andrea, Cappellozza, Silvia, Sandrelli, Federica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430696/
https://www.ncbi.nlm.nih.gov/pubmed/28432358
http://dx.doi.org/10.1038/s41598-017-01162-z
Descripción
Sumario:The domesticated silkworm Bombyx mori has an innate immune system, whose main effectors are the antimicrobial peptides (AMPs). Silkworm strains are commonly grouped into four geographical types (Japanese, Chinese, European and Tropical) and are generally characterised by a variable susceptibility to infections. To clarify the genetic and molecular mechanisms on which the different responses to infections are based, we exposed one silkworm strain for each geographical area to oral infections with the silkworm pathogens Enterococcus mundtii or Serratia marcescens. We detected a differential susceptibility to both bacteria, with the European strain displaying the lowest sensitivity to E. mundtii and the Indian one to S. marcescens. We found that all the strains were able to activate the AMP response against E. mundtii. However, the highest tolerance of the European strain appeared to be related to the specific composition of its AMP cocktail, containing more effective variants such as a peculiar Cecropin B6 isoform. The resistance of the Indian strain to S. marcescens seemed to be associated with its prompt capability to activate the systemic transcription of AMPs. These data suggest that B. mori strains with distinct genetic backgrounds employ different strategies to counteract bacterial infections, whose efficacy appears to be pathogen-dependent.