Cargando…
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization
Adoption of Electronic Health Record (EHR) systems has led to collection of massive healthcare data, which creates oppor- tunities and challenges to study them. Computational phenotyping offers a promising way to convert the sparse and complex data into meaningful concepts that are interpretable to...
Autores principales: | Kim, Yejin, El-Kareh, Robert, Sun, Jimeng, Yu, Hwanjo, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430728/ https://www.ncbi.nlm.nih.gov/pubmed/28442772 http://dx.doi.org/10.1038/s41598-017-01139-y |
Ejemplares similares
-
Phenotyping of Korean patients with better-than-expected efficacy of moderate-intensity statins using tensor factorization
por: Choi, Jingyun, et al.
Publicado: (2018) -
Smartphone dependence classification using tensor factorization
por: Choi, Jingyun, et al.
Publicado: (2017) -
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping
por: Perros, Ioakeim, et al.
Publicado: (2018) -
STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization
por: Kargas, Nikos, et al.
Publicado: (2020) -
Incremental Discriminant Analysis in Tensor Space
por: Chang, Liu, et al.
Publicado: (2015)