Cargando…
Value of evidence from syndromic surveillance with cumulative evidence from multiple data streams with delayed reporting
Delayed reporting of health data may hamper the early detection of infectious diseases in surveillance systems. Furthermore, combining multiple data streams, e.g. aiming at improving a system’s sensitivity, can be challenging. In this study, we used a Bayesian framework where the result is presented...
Autores principales: | Struchen, R., Vial, F., Andersson, M. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430846/ https://www.ncbi.nlm.nih.gov/pubmed/28446757 http://dx.doi.org/10.1038/s41598-017-01259-5 |
Ejemplares similares
-
Value of evidence from syndromic surveillance with delayed
reporting
por: Struchen, Rahel, et al.
Publicado: (2017) -
Using Bayes' Rule to Define the Value of Evidence from Syndromic Surveillance
por: Andersson, Mats Gunnar, et al.
Publicado: (2014) -
Evaluation of Syndromic Surveillance Data Streams in Animal
Health
por: Hennessey, Morgan, et al.
Publicado: (2017) -
Outbreak Prediction: Aggregating Evidence Through Multivariate
Surveillance
por: Vial, Flavie, et al.
Publicado: (2015) -
Dashboards as strategy to integrate multiple data streams for real time surveillance
por: Eckelmann, Fabian, et al.
Publicado: (2019)