Cargando…

A self-consistent spin-diffusion model for micromagnetics

We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Abert, Claas, Ruggeri, Michele, Bruckner, Florian, Vogler, Christoph, Manchon, Aurelien, Praetorius, Dirk, Suess, Dieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431348/
https://www.ncbi.nlm.nih.gov/pubmed/28442713
http://dx.doi.org/10.1038/s41598-016-0019-y
_version_ 1783236409150144512
author Abert, Claas
Ruggeri, Michele
Bruckner, Florian
Vogler, Christoph
Manchon, Aurelien
Praetorius, Dirk
Suess, Dieter
author_facet Abert, Claas
Ruggeri, Michele
Bruckner, Florian
Vogler, Christoph
Manchon, Aurelien
Praetorius, Dirk
Suess, Dieter
author_sort Abert, Claas
collection PubMed
description We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
format Online
Article
Text
id pubmed-5431348
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54313482017-05-17 A self-consistent spin-diffusion model for micromagnetics Abert, Claas Ruggeri, Michele Bruckner, Florian Vogler, Christoph Manchon, Aurelien Praetorius, Dirk Suess, Dieter Sci Rep Article We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively. Nature Publishing Group UK 2016-12-21 /pmc/articles/PMC5431348/ /pubmed/28442713 http://dx.doi.org/10.1038/s41598-016-0019-y Text en © The Author(s) 2016 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Abert, Claas
Ruggeri, Michele
Bruckner, Florian
Vogler, Christoph
Manchon, Aurelien
Praetorius, Dirk
Suess, Dieter
A self-consistent spin-diffusion model for micromagnetics
title A self-consistent spin-diffusion model for micromagnetics
title_full A self-consistent spin-diffusion model for micromagnetics
title_fullStr A self-consistent spin-diffusion model for micromagnetics
title_full_unstemmed A self-consistent spin-diffusion model for micromagnetics
title_short A self-consistent spin-diffusion model for micromagnetics
title_sort self-consistent spin-diffusion model for micromagnetics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431348/
https://www.ncbi.nlm.nih.gov/pubmed/28442713
http://dx.doi.org/10.1038/s41598-016-0019-y
work_keys_str_mv AT abertclaas aselfconsistentspindiffusionmodelformicromagnetics
AT ruggerimichele aselfconsistentspindiffusionmodelformicromagnetics
AT brucknerflorian aselfconsistentspindiffusionmodelformicromagnetics
AT voglerchristoph aselfconsistentspindiffusionmodelformicromagnetics
AT manchonaurelien aselfconsistentspindiffusionmodelformicromagnetics
AT praetoriusdirk aselfconsistentspindiffusionmodelformicromagnetics
AT suessdieter aselfconsistentspindiffusionmodelformicromagnetics
AT abertclaas selfconsistentspindiffusionmodelformicromagnetics
AT ruggerimichele selfconsistentspindiffusionmodelformicromagnetics
AT brucknerflorian selfconsistentspindiffusionmodelformicromagnetics
AT voglerchristoph selfconsistentspindiffusionmodelformicromagnetics
AT manchonaurelien selfconsistentspindiffusionmodelformicromagnetics
AT praetoriusdirk selfconsistentspindiffusionmodelformicromagnetics
AT suessdieter selfconsistentspindiffusionmodelformicromagnetics