Cargando…
Lower and upper bounds for entanglement of Rényi-α entropy
Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the application ou...
Autores principales: | Song, Wei, Chen, Lin, Cao, Zhuo-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431388/ https://www.ncbi.nlm.nih.gov/pubmed/28003661 http://dx.doi.org/10.1038/s41598-016-0029-9 |
Ejemplares similares
-
Entanglement Renyi Entropy of Two Disjoint Intervals for Large c Liouville Field Theory
por: Tsujimura, Jun, et al.
Publicado: (2022) -
Conditional Rényi Entropy and the Relationships between Rényi Capacities
por: Aishwarya, Gautam, et al.
Publicado: (2020) -
Rényi Entropy and Rényi Divergence in Product MV-Algebras
por: Markechová, Dagmar, et al.
Publicado: (2018) -
On Rényi Permutation Entropy
por: Gutjahr, Tim, et al.
Publicado: (2021) -
Tight Bounds on the Rényi Entropy via Majorization with Applications to Guessing and Compression
por: Sason, Igal
Publicado: (2018)