Cargando…
Leveraging multiple genomic data to prioritize disease-causing indels from exome sequencing data
The emergence of exome sequencing in recent years has enabled rapid and cost-effective detection of genetic variants in coding regions and offers a great opportunity to combine sequencing experiments with subsequent computational analysis for dissecting genetic basis of human inherited diseases. How...
Autores principales: | Wu, Mengmeng, Chen, Ting, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431795/ https://www.ncbi.nlm.nih.gov/pubmed/28496131 http://dx.doi.org/10.1038/s41598-017-01834-w |
Ejemplares similares
-
Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data
por: Wu, Mengmeng, et al.
Publicado: (2015) -
Reducing INDEL calling errors in whole genome and exome sequencing data
por: Fang, Han, et al.
Publicado: (2014) -
Global inference of disease-causing single nucleotide variants from exome sequencing data
por: Wu, Mengmeng, et al.
Publicado: (2016) -
Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data
por: Kim, Bo-Young, et al.
Publicado: (2017) -
A practical method to detect SNVs and indels from whole genome and exome sequencing data
por: Shigemizu, Daichi, et al.
Publicado: (2013)