Cargando…

Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma

Studies on the possible association between bacteria and oral squamous cell carcinoma (OSCC) remain inconclusive, largely due to methodological variations/limitations. The objective of this study was to characterize the species composition as well as functional potential of the bacteriome associated...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-hebshi, Nezar Noor, Nasher, Akram Thabet, Maryoud, Mohamed Yousef, Homeida, Husham E., Chen, Tsute, Idris, Ali Mohamed, Johnson, Newell W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431832/
https://www.ncbi.nlm.nih.gov/pubmed/28500338
http://dx.doi.org/10.1038/s41598-017-02079-3
Descripción
Sumario:Studies on the possible association between bacteria and oral squamous cell carcinoma (OSCC) remain inconclusive, largely due to methodological variations/limitations. The objective of this study was to characterize the species composition as well as functional potential of the bacteriome associated with OSCC. DNA obtained from 20 fresh OSCC biopsies (cases) and 20 deep-epithelium swabs (matched control subjects) was sequenced for the V1-V3 region using Illumina’s 2 × 300 bp chemistry. High quality, non-chimeric merged reads were classified to species level using a prioritized BLASTN-algorithm. Downstream analyses were performed using QIIME, PICRUSt, and LEfSe. Fusobacterium nucleatum subsp. polymorphum was the most significantly overrepresented species in the tumors followed by Pseudomonas aeruginosa and Campylobacter sp. Oral taxon 44, while Streptococcus mitis, Rothia mucilaginosa and Haemophilus parainfluenzae were the most significantly abundant in the controls. Functional prediction showed that genes involved in bacterial mobility, flagellar assembly, bacterial chemotaxis and LPS synthesis were enriched in the tumors while those responsible for DNA repair and combination, purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, ribosome biogenesis and glycolysis/gluconeogenesis were significantly associated with the controls. This is the first epidemiological evidence for association of F. nucleatum and P. aeruginosa with OSCC. Functionally, an “inflammatory bacteriome” is enriched in OSSC.