Cargando…

CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor

CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying gradu...

Descripción completa

Detalles Bibliográficos
Autores principales: Funnell, Tyler, Tasaki, Shinya, Oloumi, Arusha, Araki, Shinsuke, Kong, Esther, Yap, Damian, Nakayama, Yusuke, Hughes, Christopher S., Cheng, S.-W. Grace, Tozaki, Hirokazu, Iwatani, Misa, Sasaki, Satoshi, Ohashi, Tomohiro, Miyazaki, Tohru, Morishita, Nao, Morishita, Daisuke, Ogasawara-Shimizu, Mari, Ohori, Momoko, Nakao, Shoichi, Karashima, Masatoshi, Sano, Masaya, Murai, Aiko, Nomura, Toshiyuki, Uchiyama, Noriko, Kawamoto, Tomohiro, Hara, Ryujiro, Nakanishi, Osamu, Shumansky, Karey, Rosner, Jamie, Wan, Adrian, McKinney, Steven, Morin, Gregg B., Nakanishi, Atsushi, Shah, Sohrab, Toyoshiba, Hiroyoshi, Aparicio, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431906/
https://www.ncbi.nlm.nih.gov/pubmed/28232751
http://dx.doi.org/10.1038/s41467-016-0008-7
Descripción
Sumario:CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3′-end processing and associated splicing factors.