Cargando…
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
Precision medicine approaches rely on obtaining precise knowledge of the true state of health of an individual patient, which results from a combination of their genetic risks and environmental exposures. This approach is currently limited by the lack of effective and efficient non-invasive medical...
Autores principales: | Oakden-Rayner, Luke, Carneiro, Gustavo, Bessen, Taryn, Nascimento, Jacinto C., Bradley, Andrew P., Palmer, Lyle J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431941/ https://www.ncbi.nlm.nih.gov/pubmed/28490744 http://dx.doi.org/10.1038/s41598-017-01931-w |
Ejemplares similares
-
A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology
por: Scheetz, Jane, et al.
Publicado: (2021) -
Deep learning and radiomics in precision medicine
por: Parekh, Vishwa S., et al.
Publicado: (2019) -
Pre-thrombectomy prognostic prediction of large-vessel ischemic stroke using machine learning: A systematic review and meta-analysis
por: Zeng, Minyan, et al.
Publicado: (2022) -
Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint
por: Bird, Alix, et al.
Publicado: (2022) -
Radiomics and radiogenomics for precision radiotherapy
por: Wu, Jia, et al.
Publicado: (2018)