Cargando…
Design, Fabrication and Characterization of Pressure-Responsive Films Based on The Orientation Dependence of Plasmonic Properties of Ag@Au Nanoplates
A novel pressure-responsive polymer composite film was developed based on Ag@Au composite nanoplates (NPLs) and polyvinylpyrrolidone (PVP) by using Au nanoparticles as concentration reference. The orientation change of Ag@Au NPLs is impelled by the deformation of polymer matrix under pressure, resul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431991/ https://www.ncbi.nlm.nih.gov/pubmed/28490752 http://dx.doi.org/10.1038/s41598-017-01928-5 |
Sumario: | A novel pressure-responsive polymer composite film was developed based on Ag@Au composite nanoplates (NPLs) and polyvinylpyrrolidone (PVP) by using Au nanoparticles as concentration reference. The orientation change of Ag@Au NPLs is impelled by the deformation of polymer matrix under pressure, resulting in its localized surface plasmon resonance (LSPR) intensity change of in-plane dipolar peak. The intensity ratio between plasmon peak of Au nanoparticles and in-plane dipolar peak of Ag@Au NPLs relies on the intensity and duration of pressure. By adjusting the viscosity of the polymer, the orientation change of LSPR may respond to a wide range of stresses. This pressure sensitive film can be utilized to record the magnitude and distribution of pressure between two contacting surfaces via optical information. |
---|