Cargando…

A question of fate

Ever since the discovery of neural stem cells in the mammalian brain, the possibility of brain tissue regeneration has captured the minds of scientists, clinicians, and the public. Neural stem cells have been envisioned as a source of donor cells for transplantation and vectors for the delivery of g...

Descripción completa

Detalles Bibliográficos
Autor principal: Maletic-Savatic, Mirjana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432065/
https://www.ncbi.nlm.nih.gov/pubmed/28505150
http://dx.doi.org/10.1371/journal.pbio.2002329
Descripción
Sumario:Ever since the discovery of neural stem cells in the mammalian brain, the possibility of brain tissue regeneration has captured the minds of scientists, clinicians, and the public. Neural stem cells have been envisioned as a source of donor cells for transplantation and vectors for the delivery of gene therapy. Over the past decade, many researchers have contributed to characterizing these cells and their lineages, providing the foundation for their utilization as therapeutic devices. In a new study, Azim and colleagues took a different approach: using pharmacogenomics to focus on neural stem cell lineage, they identified specific compounds that can direct neural stem cell fate toward a specific lineage in vivo, both in physiological and pathological conditions. Their work opens new avenues for treatment of neurodegenerative and demyelinating disorders.