Cargando…

phyC: Clustering cancer evolutionary trees

Multi-regional sequencing provides new opportunities to investigate genetic heterogeneity within or between common tumors from an evolutionary perspective. Several state-of-the-art methods have been proposed for reconstructing cancer evolutionary trees based on multi-regional sequencing data to deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsui, Yusuke, Niida, Atsushi, Uchi, Ryutaro, Mimori, Koshi, Miyano, Satoru, Shimamura, Teppei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432190/
https://www.ncbi.nlm.nih.gov/pubmed/28459850
http://dx.doi.org/10.1371/journal.pcbi.1005509
Descripción
Sumario:Multi-regional sequencing provides new opportunities to investigate genetic heterogeneity within or between common tumors from an evolutionary perspective. Several state-of-the-art methods have been proposed for reconstructing cancer evolutionary trees based on multi-regional sequencing data to develop models of cancer evolution. However, there have been few studies on comparisons of a set of cancer evolutionary trees. We propose a clustering method (phyC) for cancer evolutionary trees, in which sub-groups of the trees are identified based on topology and edge length attributes. For interpretation, we also propose a method for evaluating the sub-clonal diversity of trees in the clusters, which provides insight into the acceleration of sub-clonal expansion. Simulation showed that the proposed method can detect true clusters with sufficient accuracy. Application of the method to actual multi-regional sequencing data of clear cell renal carcinoma and non-small cell lung cancer allowed for the detection of clusters related to cancer type or phenotype. phyC is implemented with R(≥3.2.2) and is available from https://github.com/ymatts/phyC.