Cargando…
Minichromosome maintenance protein 2 and 3 promote osteosarcoma progression via DHX9 and predict poor patient prognosis
A label free quantitative proteomic approach (SWATH™ experiment) was performed to identify tumor-associated nuclear proteins that are differentially expressed between osteosarcoma cells and osteoblast cells. By functional screening, minichromosome maintenance protein 2 (MCM2) and minichromosome main...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432265/ https://www.ncbi.nlm.nih.gov/pubmed/28460433 http://dx.doi.org/10.18632/oncotarget.15474 |
Sumario: | A label free quantitative proteomic approach (SWATH™ experiment) was performed to identify tumor-associated nuclear proteins that are differentially expressed between osteosarcoma cells and osteoblast cells. By functional screening, minichromosome maintenance protein 2 (MCM2) and minichromosome maintenance protein 3 (MCM3) were found to be related to osteosarcoma cell growth. Here, we show that knockdown of MCM2 or MCM3 inhibits osteosarcoma growth in vitro and in vivo. In co-immunoprecipitation and co-localization experiments, MCM2 and MCM3 were found to interact with DExH-box helicase 9 (DHX9) in osteosarcoma cells. A rescue study showed that the decreased growth of osteosarcoma cells by MCM2 or MCM3 knockdown was reversed by DHX9 overexpression, indicating that MCM2 and MCM3 activity was DHX9-dependent. In addition, the depletion of DHX9 hindered osteosarcoma cell proliferation. Notably, MCM2 and MCM3 expression levels were positively correlated with the DHX9 expression level in tumor samples and were associated with a poor prognosis in patients with osteosarcoma. Taken together, these results suggest that the MCM2/MCM3–DHX9 axis has an important role in osteosarcoma progression. |
---|