Cargando…
Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) involve in germ cell development. However, little is known about the functions and mechanisms of lncRNAs and circRNAs in self-renewal and differentiation of germline stem cells. Therefore, we explored the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432280/ https://www.ncbi.nlm.nih.gov/pubmed/28404936 http://dx.doi.org/10.18632/oncotarget.15719 |
Sumario: | Accumulating evidence indicates that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) involve in germ cell development. However, little is known about the functions and mechanisms of lncRNAs and circRNAs in self-renewal and differentiation of germline stem cells. Therefore, we explored the expression profiles of mRNAs, lncRNAs, and circRNAs in male and female mouse germline stem cells by high-throughput sequencing. We identified 18573 novel lncRNAs and 18822 circRNAs in the germline stem cells and further confirmed the existence of these lncRNAs and circRNAs by RT-PCR. The results showed that male and female germline stem cells had similar GDNF signaling mechanism. Subsequently, 8115 mRNAs, 3996 lncRNAs, and 921 circRNAs exhibited sex-biased expression that may be associated with germline stem cell acquisition of the sex-specific properties required for differentiation into gametes. Gene Ontology (GO) and KEGG pathway enrichment analyses revealed different functions for these sex-biased lncRNAs and circRNAs. We further constructed correlated expression networks including coding–noncoding co-expression and competing endogenous RNAs with bioinformatics. Co-expression analysis showed hundreds of lncRNAs were correlated with sex differences in mouse germline stem cells, including lncRNA Gm11851, lncRNA Gm12840, lncRNA 4930405O22Rik, and lncRNA Atp10d. CeRNA network inferred that lncRNA Meg3 and cirRNA Igf1r could bind competitively with miRNA-15a-5p increasing target gene Inha, Acsl3, Kif21b, and Igfbp2 expressions. These findings provide novel perspectives on lncRNAs and circRNAs and lay a foundation for future research into the regulating mechanisms of lncRNAs and circRNAs in germline stem cells. |
---|