Cargando…

High Sensitivity of SIRT3 Deficient Hearts to Ischemia-Reperfusion Is Associated with Mitochondrial Abnormalities

Aim: Sirtuins are NAD(+)-dependent deacetylases that regulate cell metabolism through protein acetylation/deacetylation, and SIRT3 is the major deacetylase among mitochondrial isoforms. Here, we elucidated the possible role of acetylation of cyclophilin D, a key regulator of the mitochondrial permea...

Descripción completa

Detalles Bibliográficos
Autores principales: Parodi-Rullán, Rebecca M., Chapa-Dubocq, Xavier, Rullán, Pedro J., Jang, Sehwan, Javadov, Sabzali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432544/
https://www.ncbi.nlm.nih.gov/pubmed/28559847
http://dx.doi.org/10.3389/fphar.2017.00275
Descripción
Sumario:Aim: Sirtuins are NAD(+)-dependent deacetylases that regulate cell metabolism through protein acetylation/deacetylation, and SIRT3 is the major deacetylase among mitochondrial isoforms. Here, we elucidated the possible role of acetylation of cyclophilin D, a key regulator of the mitochondrial permeability transition pore (mPTP), in mitochondria-mediated cardiac dysfunction induced by ischemia-reperfusion (IR) in wild type (WT) and SIRT3 knockout (SIRT3(-/-)) mice. Materials and Methods: Isolated and Langendorff-mode perfused hearts of WT and SIRT3(-/-) mice were subjected to 25-min global ischemia followed by 60-min of reperfusion in the presence or absence of the mPTP inhibitor, sanglifehrin A (SfA). Results: Analysis of mitochondrial sirtuins demonstrated that SIRT3 deficiency upregulated SIRT4 with no effect on SIRT5 expression. Hearts of SIRT3(-/-) mice exhibited significantly less recovery of cardiac function at the end of IR compared to WT mice. Intact (non-perfused) SIRT3(-/-) hearts exhibited an increased rate of Ca(2+)-induced swelling in mitochondria as an indicator of mPTP opening. However, there was no difference in mPTP opening and cyclophilin D acetylation between WT and SIRT3(-/-) hearts subjected to IR injury. Ca(2+)-stimulated H(2)O(2) production was significantly higher in SIRT3(-/-) mitochondria that was prevented by SfA. Superoxide dismutase activity was lower in SIRT3(-/-) heart mitochondria subjected to IR which correlated with an increase in protein carbonylation. However, mitochondrial DNA integrity was not affected in SIRT3(-/-) hearts after IR. Conclusion: SIRT3 deficiency exacerbates cardiac dysfunction during post-ischemic recovery, and increases mPTP opening and ROS generation without oxidative damage to mitochondrial proteins and DNA.