Cargando…

Phenologic variation of major triterpenoids in regular and white Antrodia cinnamomea

BACKGROUND: Antrodia cinnamomea and its host Cinnamomum kanehirae are both endemic species unique to Taiwan. Many studies have confirmed that A. cinnamomea is rich in polysaccharides and triterpenoids that may carry medicinal effects in anti-cancer, anti-inflammation, anti-hypertension, and anti-oxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wei-Lun, Ho, Yen-Peng, Chou, Jyh-Ching
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432900/
https://www.ncbi.nlm.nih.gov/pubmed/28597443
http://dx.doi.org/10.1186/s40529-016-0148-4
Descripción
Sumario:BACKGROUND: Antrodia cinnamomea and its host Cinnamomum kanehirae are both endemic species unique to Taiwan. Many studies have confirmed that A. cinnamomea is rich in polysaccharides and triterpenoids that may carry medicinal effects in anti-cancer, anti-inflammation, anti-hypertension, and anti-oxidation. Therefore it is of interest to study the chemical variation of regular orange-red strains and white strains, which included naturally occurring and blue-light induced white A. cinnamomea. RESULTS: The chemical profiles of A. cinnamomea extracts at different growth stages were compared using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). The TLC and HPLC profiles indicated that specific triterpenoids varied between white and regular strains. Moreover, the compounds of blue-light induced white strain were similar to those of naturally occurring white strain but retained specific chemical characteristics in more polar region of the HPLC chromatogram of regular strain. CONCLUSIONS: Blue-light radiation could change color of the regular A. cinnamomea from orange–red to white by changing its secondary metabolism and growth condition. Naturally occurring white strain did not show a significantly different composition of triterpenoid profiles up to eight weeks old when compared with the triterpenoid profiles of the regular strain at the same age. The ergostane-type triterpenoids were found existing in both young mycelia and old mycelia with fruiting body in artificial agar-plate medium culture, suggesting a more diversified biosynthetic pathway in artificial agar-plate culture rather than wild or submerged culture.