Cargando…

Leaf senescence induced by EGY1 defection was partially restored by glucose in Arabidopsis thaliana

BACKGROUND: Ethylene-dependent gravitropism-deficient and yellow-green 1 (EGY1) protein is required for chloroplast development and photosynthesis conduction. The egy1 deletion mutants have a yellow-green phenotype and reduced granal thylakoids. Furthermore, the yellow-green phenotype of egy1 mutant...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Cuiyun, Wang, Jin, Zhao, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432902/
https://www.ncbi.nlm.nih.gov/pubmed/28510790
http://dx.doi.org/10.1186/s40529-016-0120-3
Descripción
Sumario:BACKGROUND: Ethylene-dependent gravitropism-deficient and yellow-green 1 (EGY1) protein is required for chloroplast development and photosynthesis conduction. The egy1 deletion mutants have a yellow-green phenotype and reduced granal thylakoids. Furthermore, the yellow-green phenotype of egy1 mutants is more obvious than that of wild-type (WT) plants with increasing leaf age, suggesting an early senescence in the egy1 mutants. However, the relationship between EGY1 functions and leaf senescence still remains poorly understood. RESULTS: We observed that egy1 mutant leaves were more yellow than those of WT (the same age) in Arabidopsis thaliana. In accompany with this phenotype, leaf survival, chlorophyll content, Fv/Fm and soluble protein content decreased, and ion leakage increased significantly in egy1 mutants compared to WT plants. At molecular level, the expressions of senescence-associated genes increased, and photosynthesis genes decreased significantly in the mutants compared to those in WT plants. Furthermore, after darkness treatment, the yellow-green phenotype of egy1 mutants was more obvious than that of WT. These results indicate that the loss-of-function of egy1 gene induces leaf senescence in A. thaliana. In addition, our results showed that the yellow-green phenotype, chlorophyll content and ion leakage of egy1 mutants was partially restored after exogenously applied glucose for 5 weeks. At the same time, the expression of hexokinase 1 (HXK1) and/or senescence-associated gene 12 (SAG12) in egy1 mutants growing on 2 % glucose was lower than that in egy1 mutants without glucose. CONCLUSION: EGY1-defection induced leaf senescence and this senescence was partially restored by glucose in A. thaliana.