Cargando…
How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments?
BACKGROUND: Rhododendron is one of the most well-known alpine flowers. In order to identify performances relating to Rhododendron’s natural habitats we investigated the leaf anatomical structures and photosynthetic characteristics of R. yunnanense, R. irroratum and R. delavayi, which showed differen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432949/ https://www.ncbi.nlm.nih.gov/pubmed/28510962 http://dx.doi.org/10.1186/1999-3110-55-36 |
Sumario: | BACKGROUND: Rhododendron is one of the most well-known alpine flowers. In order to identify performances relating to Rhododendron’s natural habitats we investigated the leaf anatomical structures and photosynthetic characteristics of R. yunnanense, R. irroratum and R. delavayi, which showed different responses after being transplanted into a common environment. RESULTS: When compared with R. irroratum and R. delavayi, R. yunnanense had lower leaf dry mass per unit area (LMA) and larger stomata, but smaller stomatal density (SD) and total stomata apparatus area percent (At), lower stomatal conductance (Gs), transpiration rate (Tr), light compensation point (LCP), light saturation point (LSP), light-saturated photosynthetic rate (Amax) and leaf nitrogen content per unit area (Na). LMA was positively correlated with Amax and maximum rates of carboxylation (Vcmax). However, leaf N content was not significantly correlated with Amax. Thus, the variation in leaf photosynthesis among species was regulated largely by changes in LMA, rather than the concent of nitrogen in leaf tissue. CONCLUSIONS: R. yunnanense plants are vulnerable to moisture and light stress, while R. irroratum and R. delavayi are better suited to dry and high radiation environments. The present results contribute to our understanding physiological trait divergence in Rhododendron, as well benefit introduction and domestication efforts for the three species of Rhododendron studied in this work. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1999-3110-55-36) contains supplementary material, which is available to authorized users. |
---|