Cargando…
Visualizing statistical significance of disease clusters using cartograms
BACKGROUND: Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equ...
Autores principales: | Kronenfeld, Barry J., Wong, David W. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433035/ https://www.ncbi.nlm.nih.gov/pubmed/28506288 http://dx.doi.org/10.1186/s12942-017-0093-9 |
Ejemplares similares
-
Visualising the expansion and spread of coronavirus disease 2019 by cartograms
por: Gao, Peichao, et al.
Publicado: (2020) -
Dot map cartograms for detection of infectious disease outbreaks: an
application to Q fever, the Netherlands and pertussis, Germany
por: Soetens, Loes, et al.
Publicado: (2017) -
Visualization methods for statistical analysis of microarray clusters
por: Hibbs, Matthew A, et al.
Publicado: (2005) -
Statistical significance for hierarchical clustering in genetic association and microarray expression studies
por: Levenstien, Mark A, et al.
Publicado: (2003) -
Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics
por: Han, Junhee, et al.
Publicado: (2016)