Cargando…

Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing

Active wound dressings play a significant role in burn and chronic wound treatment. In this study, electrospinning process is used to fabricate a novel three-layer active wound dressing based on ε-polycaprolactone (PCL), polyvinylalcohol (PVA), and curcumin (CU) as a biologically active compound. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Saeed, Seyed Mahdi, Mirzadeh, Hamid, Zandi, Mojgan, Barzin, Jalal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433961/
https://www.ncbi.nlm.nih.gov/pubmed/28155217
http://dx.doi.org/10.1007/s40204-017-0062-1
Descripción
Sumario:Active wound dressings play a significant role in burn and chronic wound treatment. In this study, electrospinning process is used to fabricate a novel three-layer active wound dressing based on ε-polycaprolactone (PCL), polyvinylalcohol (PVA), and curcumin (CU) as a biologically active compound. The main purpose for developing such a system is to control wound exudates, which remains a challenge, as well as enjoying the anti-bacterial property. Electrospinning process parameters are optimized by response surface methodology to achieve appropriate nanofibrous electrospun mats, and then, a three-layer dressing has been designed in view of water absorbability, anti-bacterial, and biocompatibility characteristics of the final dressing. The results illustrate that a three-layer dressing based on PCL/curcumin containing PVA as a middle layer with optimized thickness which is placed over the incision, absorbs three times exudates in comparison with pristine dressing. Anti-bacterial tests reveal that the dressing containing 16% curcumin exhibits anti-bacterial activity without sacrificing the acceptable level of cell viability.