Cargando…
Nash Equilibrium of Social-Learning Agents in a Restless Multiarmed Bandit Game
We study a simple model for social-learning agents in a restless multiarmed bandit (rMAB). The bandit has one good arm that changes to a bad one with a certain probability. Each agent stochastically selects one of the two methods, random search (individual learning) or copying information from other...
Autores principales: | Nakayama, Kazuaki, Hisakado, Masato, Mori, Shintaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434024/ https://www.ncbi.nlm.nih.gov/pubmed/28512339 http://dx.doi.org/10.1038/s41598-017-01750-z |
Ejemplares similares
-
A Multiarmed Bandit Approach to Adaptive Water Quality Management
por: Martin, David M, et al.
Publicado: (2020) -
Channel Selection Based on Trust and Multiarmed Bandit in Multiuser, Multichannel Cognitive Radio Networks
por: Zeng, Fanzi, et al.
Publicado: (2014) -
Two-Stage Multiarmed Bandit for Reconfigurable Intelligent Surface Aided Millimeter Wave Communications
por: Mohamed, Ehab Mahmoud, et al.
Publicado: (2022) -
A Multiarmed Bandit Approach for LTE-U/Wi-Fi Coexistence in a Multicell Scenario
por: Diógenes do Rego, Iago, et al.
Publicado: (2023) -
Local Nash Equilibrium in Social Networks
por: Zhang, Yichao, et al.
Publicado: (2014)