Cargando…
Energy landscape analysis of neuroimaging data
Computational neuroscience models have been used for understanding neural dynamics in the brain and how they may be altered when physiological or other conditions change. We review and develop a data-driven approach to neuroimaging data called the energy landscape analysis. The methods are rooted in...
Autores principales: | Ezaki, Takahiro, Watanabe, Takamitsu, Ohzeki, Masayuki, Masuda, Naoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434078/ https://www.ncbi.nlm.nih.gov/pubmed/28507232 http://dx.doi.org/10.1098/rsta.2016.0287 |
Ejemplares similares
-
Reliability of energy landscape analysis of resting-state functional MRI data
por: Khanra, Pitambar, et al.
Publicado: (2023) -
Age‐related changes in the ease of dynamical transitions in human brain activity
por: Ezaki, Takahiro, et al.
Publicado: (2018) -
Clustering Coefficients for Correlation Networks
por: Masuda, Naoki, et al.
Publicado: (2018) -
Modelling state‐transition dynamics in resting‐state brain signals by the hidden Markov and Gaussian mixture models
por: Ezaki, Takahiro, et al.
Publicado: (2021) -
Energy landscape and dynamics of brain activity during human bistable perception
por: Watanabe, Takamitsu, et al.
Publicado: (2014)