Cargando…

Improved axenic hydroponic whole plant propagation for rapid production of roots as transformation target tissue

BACKGROUND: Plant roots are used as an efficient target tissue for plant transformation assays. In root propagable species transformed roots are able to regenerate into whole plants without the addition of exogenous hormones, thus avoiding somaclonal variation associated with many plant transformati...

Descripción completa

Detalles Bibliográficos
Autores principales: Benzle, Kyle, Cornish, Katrina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434549/
https://www.ncbi.nlm.nih.gov/pubmed/28523073
http://dx.doi.org/10.1186/s13007-017-0189-z
Descripción
Sumario:BACKGROUND: Plant roots are used as an efficient target tissue for plant transformation assays. In root propagable species transformed roots are able to regenerate into whole plants without the addition of exogenous hormones, thus avoiding somaclonal variation associated with many plant transformation protocols. Plants grown in soil or soilless solid medium have roots that tend to be extremely delicate and are difficult to sterilize in advance of plant transformation experiments. Axenic tissue culture plants grown on semi-solid media are slow to produce large amounts of biomass compared to plants grown in solution-based media. METHODS: Seeds were germinated and grown for 14 days on half-strength semi-solid Murashige and Skoog medium containing 1% sucrose. Seedlings were then transferred to Magenta™ GA7 vessels containing either liquid or semi-solid ½ MS medium with 0.25, 0.5, 1, 2 or 3% sucrose. In the hydroponics (liquid medium) treatments, expanded clay balls were used to anchor seedlings. Hydroponic vessels were fitted with a sterile air aeration hose and filled ¾ full (100 mL) with liquid ½ MS media. Liquid media were replaced after 7 days. All plants were grown under fluorescent lights for 14 days. RESULTS: We have developed an improved axenic hydroponic propagation system for producing large quantities of plant roots for use in transformation assays using Taraxacum kok-saghyz as a model for root propagable species. Plants grew significantly faster in liquid media than on solid media. Addition of sucrose from 0.25 to 2% was correlated with an increase in biomass accumulation in plants grown in liquid media. CONCLUSIONS: Our improved axenic hydroponic method yields sufficient quantities of roots for extensive plant transformation/molecular studies.