Cargando…
Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes
BACKGROUND: Enzymatic treatment of lignocellulosic material for increased biogas production has so far focused on pretreatment methods. However, often combinations of enzymes and different physicochemical treatments are necessary to achieve a desired effect. This need for additional energy and chemi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434626/ https://www.ncbi.nlm.nih.gov/pubmed/28523077 http://dx.doi.org/10.1186/s13068-017-0814-0 |
Sumario: | BACKGROUND: Enzymatic treatment of lignocellulosic material for increased biogas production has so far focused on pretreatment methods. However, often combinations of enzymes and different physicochemical treatments are necessary to achieve a desired effect. This need for additional energy and chemicals compromises the rationale of using enzymes for low energy treatment to promote biogas production. Therefore, simpler and less energy intensive in situ anaerobic digester treatment with enzymes is desirable. However, investigations in which exogenous enzymes are added to treat the material in situ have shown mixed success, possibly because the enzymes used originated from organisms not evolutionarily adapted to the environment of anaerobic digesters. In this study, to examine the effect of enzymes endogenous to methanogenic microbial communities, cellulolytic enzymes were instead overproduced and collected from a dedicated methanogenic microbial community. By this approach, a solution with very high endogenous microbial cellulolytic activity was produced and tested for the effect on biogas production from lignocellulose by in situ anaerobic digester treatment. RESULTS: Addition of enzymes, endogenous to the environment of a mixed methanogenic microbial community, to the anaerobic digestion of ensiled forage ley resulted in significantly increased rate and yield of biomethane production. The enzyme solution had an instant effect on more readily available cellulosic material. More importantly, the induced enzyme solution also affected the biogas production rate from less accessible cellulosic material in a second slower phase of lignocellulose digestion. Notably, this effect was maintained throughout the experiment to completely digested lignocellulosic substrate. CONCLUSIONS: The induced enzyme solution collected from a microbial methanogenic community contained enzymes that were apparently active and stable in the environment of anaerobic digestion. The enzymatic activity had a profound effect on the biogas production rate and yield, comparable with the results of many pretreatment methods. Thus, application of such enzymes could enable efficient low energy in situ anaerobic digester treatment for increased biomethane production from lignocellulosic material. |
---|