Cargando…

Unravelling the Pathway Complexity in Conformationally Flexible N‐Centered Triarylamine Trisamides

Two families of C (3)‐symmetrical triarylamine‐trisamides comprising a triphenylamine‐ or a tri(pyrid‐2‐yl)amine core are presented. Both families self‐assemble in apolar solvents via cooperative hydrogen‐bonding interactions into helical supramolecular polymers as evidenced by a combination of spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Adelizzi, Beatrice, Filot, Ivo A. W., Palmans, Anja R. A., Meijer, E. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434799/
https://www.ncbi.nlm.nih.gov/pubmed/27981630
http://dx.doi.org/10.1002/chem.201603938
Descripción
Sumario:Two families of C (3)‐symmetrical triarylamine‐trisamides comprising a triphenylamine‐ or a tri(pyrid‐2‐yl)amine core are presented. Both families self‐assemble in apolar solvents via cooperative hydrogen‐bonding interactions into helical supramolecular polymers as evidenced by a combination of spectroscopic measurements, and corroborated by DFT calculations. The introduction of a stereocenter in the side chains biases the helical sense of the supramolecular polymers formed. Compared to other C (3)‐symmetrical compounds, a much richer self‐assembly landscape is observed. Temperature‐dependent spectroscopy measurements highlight the presence of two self‐assembled states of opposite handedness. One state is formed at high temperature from a molecularly dissolved solution via a nucleation–elongation mechanism. The second state is formed below room temperature through a sharp transition from the first assembled state. The change in helicity is proposed to be related to a conformational switch of the triarylamine core due to an equilibrium between a 3:0 and a 2:1 conformation. Thus, within a limited temperature window, a small conformational twist results in an assembled state of opposite helicity.