Cargando…
Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms
Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement (NREM) stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important r...
Autores principales: | Liu, Min-Yin, Huang, Adam, Huang, Norden E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435763/ https://www.ncbi.nlm.nih.gov/pubmed/28572762 http://dx.doi.org/10.3389/fnhum.2017.00261 |
Ejemplares similares
-
Hierarchical fusion detection algorithm for sleep spindle detection
por: Chen, Chao, et al.
Publicado: (2023) -
Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform
por: Adamczyk, Marek, et al.
Publicado: (2015) -
Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools
por: O'Reilly, Christian, et al.
Publicado: (2015) -
Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm
por: Li, Hong, et al.
Publicado: (2017) -
Applications Of Multi-objective Evolutionary Algorithms
por: Coello, Carlos A, et al.
Publicado: (2004)