Cargando…
Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors
The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural sub...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435879/ https://www.ncbi.nlm.nih.gov/pubmed/28507036 http://dx.doi.org/10.1101/lm.044750.116 |
_version_ | 1783237296850468864 |
---|---|
author | Davies, Don A. Hurtubise, Jessica L. Greba, Quentin Howland, John G. |
author_facet | Davies, Don A. Hurtubise, Jessica L. Greba, Quentin Howland, John G. |
author_sort | Davies, Don A. |
collection | PubMed |
description | The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural substrates involved in the task. The present experiments tested the effects of systemic and intracranial injections of NMDA receptor antagonists on the TUNL task. After training, male Long Evans rats systemically injected with the competitive NMDA receptor antagonist CPP (10 mg/kg) had impaired accuracy regardless of the degree of stimuli separation or length of delay between the sample and test phases. Injections of Ro 25-6981 (6 or 10 mg/kg), an antagonist selective for GluN2B subunit-containing NMDA receptors, did not affect accuracy on the task. Direct infusion of the competitive NMDA receptor antagonist AP5 into mPFC or dmSTR reduced overall accuracy on the TUNL task. These results demonstrate that TUNL task performance depends on NMDA receptors within the mPFC and dmSTR. |
format | Online Article Text |
id | pubmed-5435879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-54358792018-06-01 Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors Davies, Don A. Hurtubise, Jessica L. Greba, Quentin Howland, John G. Learn Mem Brief Communication The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural substrates involved in the task. The present experiments tested the effects of systemic and intracranial injections of NMDA receptor antagonists on the TUNL task. After training, male Long Evans rats systemically injected with the competitive NMDA receptor antagonist CPP (10 mg/kg) had impaired accuracy regardless of the degree of stimuli separation or length of delay between the sample and test phases. Injections of Ro 25-6981 (6 or 10 mg/kg), an antagonist selective for GluN2B subunit-containing NMDA receptors, did not affect accuracy on the task. Direct infusion of the competitive NMDA receptor antagonist AP5 into mPFC or dmSTR reduced overall accuracy on the TUNL task. These results demonstrate that TUNL task performance depends on NMDA receptors within the mPFC and dmSTR. Cold Spring Harbor Laboratory Press 2017-06 /pmc/articles/PMC5435879/ /pubmed/28507036 http://dx.doi.org/10.1101/lm.044750.116 Text en © 2017 Davies et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Brief Communication Davies, Don A. Hurtubise, Jessica L. Greba, Quentin Howland, John G. Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors |
title | Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors |
title_full | Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors |
title_fullStr | Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors |
title_full_unstemmed | Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors |
title_short | Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors |
title_sort | medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (tunl) task in rats: role of nmda receptors |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435879/ https://www.ncbi.nlm.nih.gov/pubmed/28507036 http://dx.doi.org/10.1101/lm.044750.116 |
work_keys_str_mv | AT daviesdona medialprefrontalcortexanddorsomedialstriatumarenecessaryforthetrialuniquedelayednonmatchingtolocationtunltaskinratsroleofnmdareceptors AT hurtubisejessical medialprefrontalcortexanddorsomedialstriatumarenecessaryforthetrialuniquedelayednonmatchingtolocationtunltaskinratsroleofnmdareceptors AT grebaquentin medialprefrontalcortexanddorsomedialstriatumarenecessaryforthetrialuniquedelayednonmatchingtolocationtunltaskinratsroleofnmdareceptors AT howlandjohng medialprefrontalcortexanddorsomedialstriatumarenecessaryforthetrialuniquedelayednonmatchingtolocationtunltaskinratsroleofnmdareceptors |