Cargando…
Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this wor...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435917/ https://www.ncbi.nlm.nih.gov/pubmed/28334800 http://dx.doi.org/10.1093/nar/gkx115 |
_version_ | 1783237305849348096 |
---|---|
author | Vazquez-Anderson, Jorge Mihailovic, Mia K. Baldridge, Kevin C. Reyes, Kristofer G. Haning, Katie Cho, Seung Hee Amador, Paul Powell, Warren B. Contreras, Lydia M. |
author_facet | Vazquez-Anderson, Jorge Mihailovic, Mia K. Baldridge, Kevin C. Reyes, Kristofer G. Haning, Katie Cho, Seung Hee Amador, Paul Powell, Warren B. Contreras, Lydia M. |
author_sort | Vazquez-Anderson, Jorge |
collection | PubMed |
description | Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs. |
format | Online Article Text |
id | pubmed-5435917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-54359172017-05-22 Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions Vazquez-Anderson, Jorge Mihailovic, Mia K. Baldridge, Kevin C. Reyes, Kristofer G. Haning, Katie Cho, Seung Hee Amador, Paul Powell, Warren B. Contreras, Lydia M. Nucleic Acids Res RNA Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs. Oxford University Press 2017-05-19 2017-02-21 /pmc/articles/PMC5435917/ /pubmed/28334800 http://dx.doi.org/10.1093/nar/gkx115 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | RNA Vazquez-Anderson, Jorge Mihailovic, Mia K. Baldridge, Kevin C. Reyes, Kristofer G. Haning, Katie Cho, Seung Hee Amador, Paul Powell, Warren B. Contreras, Lydia M. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions |
title | Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions |
title_full | Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions |
title_fullStr | Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions |
title_full_unstemmed | Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions |
title_short | Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions |
title_sort | optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible rna regions |
topic | RNA |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435917/ https://www.ncbi.nlm.nih.gov/pubmed/28334800 http://dx.doi.org/10.1093/nar/gkx115 |
work_keys_str_mv | AT vazquezandersonjorge optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT mihailovicmiak optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT baldridgekevinc optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT reyeskristoferg optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT haningkatie optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT choseunghee optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT amadorpaul optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT powellwarrenb optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions AT contreraslydiam optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions |