Cargando…

Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions

Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this wor...

Descripción completa

Detalles Bibliográficos
Autores principales: Vazquez-Anderson, Jorge, Mihailovic, Mia K., Baldridge, Kevin C., Reyes, Kristofer G., Haning, Katie, Cho, Seung Hee, Amador, Paul, Powell, Warren B., Contreras, Lydia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435917/
https://www.ncbi.nlm.nih.gov/pubmed/28334800
http://dx.doi.org/10.1093/nar/gkx115
_version_ 1783237305849348096
author Vazquez-Anderson, Jorge
Mihailovic, Mia K.
Baldridge, Kevin C.
Reyes, Kristofer G.
Haning, Katie
Cho, Seung Hee
Amador, Paul
Powell, Warren B.
Contreras, Lydia M.
author_facet Vazquez-Anderson, Jorge
Mihailovic, Mia K.
Baldridge, Kevin C.
Reyes, Kristofer G.
Haning, Katie
Cho, Seung Hee
Amador, Paul
Powell, Warren B.
Contreras, Lydia M.
author_sort Vazquez-Anderson, Jorge
collection PubMed
description Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs.
format Online
Article
Text
id pubmed-5435917
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-54359172017-05-22 Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions Vazquez-Anderson, Jorge Mihailovic, Mia K. Baldridge, Kevin C. Reyes, Kristofer G. Haning, Katie Cho, Seung Hee Amador, Paul Powell, Warren B. Contreras, Lydia M. Nucleic Acids Res RNA Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs. Oxford University Press 2017-05-19 2017-02-21 /pmc/articles/PMC5435917/ /pubmed/28334800 http://dx.doi.org/10.1093/nar/gkx115 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle RNA
Vazquez-Anderson, Jorge
Mihailovic, Mia K.
Baldridge, Kevin C.
Reyes, Kristofer G.
Haning, Katie
Cho, Seung Hee
Amador, Paul
Powell, Warren B.
Contreras, Lydia M.
Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
title Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
title_full Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
title_fullStr Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
title_full_unstemmed Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
title_short Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions
title_sort optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible rna regions
topic RNA
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435917/
https://www.ncbi.nlm.nih.gov/pubmed/28334800
http://dx.doi.org/10.1093/nar/gkx115
work_keys_str_mv AT vazquezandersonjorge optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT mihailovicmiak optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT baldridgekevinc optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT reyeskristoferg optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT haningkatie optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT choseunghee optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT amadorpaul optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT powellwarrenb optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions
AT contreraslydiam optimizationofanovelbiophysicalmodelusinglargescaleinvivoantisensehybridizationdatadisplaysimprovedpredictioncapabilitiesofstructurallyaccessiblernaregions