Cargando…
Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals
The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors’ main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG)...
Autores principales: | Yin, Jinghai, Hu, Jianfeng, Mu, Zhendong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435952/ https://www.ncbi.nlm.nih.gov/pubmed/28529761 http://dx.doi.org/10.1049/htl.2016.0053 |
Ejemplares similares
-
Application of Graph Neural Network in Driving Fatigue Detection Based on EEG Signals
por: Mu, Zhendong, et al.
Publicado: (2022) -
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
por: Hu, Jianfeng
Publicado: (2017) -
Electroencephalographic correlates of Chronic Fatigue Syndrome
por: Decker, Michael J, et al.
Publicado: (2009) -
Evaluation of Mental Load of Drivers in Long Highway Tunnel Based on Electroencephalograph
por: Yang, Yanqun, et al.
Publicado: (2021) -
Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel
por: Hu, Jianfeng
Publicado: (2017)