Cargando…
IPF-LASSO: Integrative L (1)-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data
As modern biotechnologies advance, it has become increasingly frequent that different modalities of high-dimensional molecular data (termed “omics” data in this paper), such as gene expression, methylation, and copy number, are collected from the same patient cohort to predict the clinical outcome....
Autores principales: | Boulesteix, Anne-Laure, De Bin, Riccardo, Jiang, Xiaoyu, Fuchs, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435977/ https://www.ncbi.nlm.nih.gov/pubmed/28546826 http://dx.doi.org/10.1155/2017/7691937 |
Ejemplares similares
-
Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data
por: Klau, Simon, et al.
Publicado: (2018) -
LASSO type penalized spline regression for binary data
por: Mullah, Muhammad Abu Shadeque, et al.
Publicado: (2021) -
The prediction of live weight of hair goats through penalized regression methods: LASSO and adaptive LASSO
por: Akkol, Suna
Publicado: (2018) -
Gene set selection via LASSO penalized regression (SLPR)
por: Frost, H. Robert, et al.
Publicado: (2017) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010)