Cargando…
Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines
Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the genera...
Autores principales: | Abuassba, Adnan O. M., Zhang, Dezheng, Luo, Xiong, Shaheryar, Ahmad, Ali, Hazrat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435980/ https://www.ncbi.nlm.nih.gov/pubmed/28546808 http://dx.doi.org/10.1155/2017/3405463 |
Ejemplares similares
-
Blockchain-Federated and Deep-Learning-Based Ensembling of Capsule Network with Incremental Extreme Learning Machines for Classification of COVID-19 Using CT Scans
por: Malik, Hassaan, et al.
Publicado: (2023) -
SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine
por: Guo, Hua, et al.
Publicado: (2018) -
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
por: Cao, Jiuwen, et al.
Publicado: (2014) -
Enhancing Breast Cancer Detection and Classification Using Advanced Multi-Model Features and Ensemble Machine Learning Techniques
por: Reshan, Mana Saleh Al, et al.
Publicado: (2023) -
Breast Tumor Classification Using an Ensemble Machine Learning Method
por: Assiri, Adel S., et al.
Publicado: (2020)