Cargando…
A shallow convolutional neural network for blind image sharpness assessment
Blind image quality assessment can be modeled as feature extraction followed by score prediction. It necessitates considerable expertise and efforts to handcraft features for optimal representation of perceptual image quality. This paper addresses blind image sharpness assessment by using a shallow...
Autores principales: | Yu, Shaode, Wu, Shibin, Wang, Lei, Jiang, Fan, Xie, Yaoqin, Li, Leida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436206/ https://www.ncbi.nlm.nih.gov/pubmed/28459832 http://dx.doi.org/10.1371/journal.pone.0176632 |
Ejemplares similares
-
Salient Region Guided Blind Image Sharpness Assessment
por: Liu, Siqi, et al.
Publicado: (2021) -
Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain
por: Yu, Shaode, et al.
Publicado: (2013) -
A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis
por: Zou, Lian, et al.
Publicado: (2019) -
A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images
por: Yu, Shaode, et al.
Publicado: (2018) -
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
por: Wu, Shibin, et al.
Publicado: (2013)