Cargando…
Detection of fetal epigenetic biomarkers through genome-wide DNA methylation study for non-invasive prenatal diagnosis
The discovery of cell-free DNA fetal (cff DNA) in maternal plasma during pregnancy provides a novel perspective for the development of non-invasive prenatal diagnosis (NIPD). Against the background of maternal DNA, the use of the relatively low concentration of cff DNA is limited in NIPD. Therefore,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436219/ https://www.ncbi.nlm.nih.gov/pubmed/28440505 http://dx.doi.org/10.3892/mmr.2017.6506 |
Sumario: | The discovery of cell-free DNA fetal (cff DNA) in maternal plasma during pregnancy provides a novel perspective for the development of non-invasive prenatal diagnosis (NIPD). Against the background of maternal DNA, the use of the relatively low concentration of cff DNA is limited in NIPD. Therefore, in order to overcome the complication of the background of maternal DNA and expand the scope of cff DNA application in clinical practice, it is necessary to identify novel universal fetal-specific DNA markers. The GeneChip Human Promoter 1.0R Array set was used in the present study to analyze the methylation status of 12 placental tissue and maternal peripheral blood whole-genome DNA samples. In total, 5 fetus differential hypermethylation regions and 6 fetus differential hypomethylation regions were identified. In order to verify the 11 selected methylation regions and detect the differential CpG sites in these regions, a bisulfate direct sequencing strategy was used. In total, 87 fetal differential methylation CpG sites were identified from 123 CpG sites. The detection of fetal differential methylation DNA regions and CpG sites may be instrumental in the development of efficient NIPD and in the expansion of its application in other disorders. |
---|