Cargando…
Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences
BACKGROUND: Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences – T2-Weighted-Imaging-FLAIR (FLAIR)...
Autores principales: | Qin, Jiang-bo, Liu, Zhenyu, Zhang, Hui, Shen, Chen, Wang, Xiao-chun, Tan, Yan, Wang, Shuo, Wu, Xiao-feng, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436423/ https://www.ncbi.nlm.nih.gov/pubmed/28478462 http://dx.doi.org/10.12659/MSM.901270 |
Ejemplares similares
-
Brain magnetic resonance imaging radiomics features associated with hepatic encephalopathy in adult cirrhotic patients
por: Sparacia, Gianvincenzo, et al.
Publicado: (2022) -
Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features
por: Ning, Zhenyuan, et al.
Publicado: (2021) -
Conventional MRI features can predict the molecular subtype of adult grade 2–3 intracranial diffuse gliomas
por: Lasocki, Arian, et al.
Publicado: (2022) -
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas
por: Liu, Zhen, et al.
Publicado: (2023) -
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023)