Cargando…
CorNet: Assigning function to networks of co-evolving residues by automated literature mining
CorNet is a web-based tool for the analysis of co-evolving residue positions in protein super-family sequence alignments. CorNet projects external information such as mutation data extracted from literature on interactively displayed groups of co-evolving residue positions to shed light on the funct...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436653/ https://www.ncbi.nlm.nih.gov/pubmed/28545124 http://dx.doi.org/10.1371/journal.pone.0176427 |
Sumario: | CorNet is a web-based tool for the analysis of co-evolving residue positions in protein super-family sequence alignments. CorNet projects external information such as mutation data extracted from literature on interactively displayed groups of co-evolving residue positions to shed light on the functions associated with these groups and the residues in them. We used CorNet to analyse six enzyme super-families and found that groups of strongly co-evolving residues tend to consist of residues involved in a same function such as activity, specificity, co-factor binding, or enantioselectivity. This finding allows to assign a function to residues for which no data is available yet in the literature. A mutant library was designed to mutate residues observed in a group of co-evolving residues predicted to be involved in enantioselectivity, but for which no literature data is available yet. The resulting set of mutations indeed showed many instances of increased enantioselectivity. |
---|