Cargando…
Bayesian estimation of directed functional coupling from brain recordings
In many fields of science, there is the need of assessing the causal influences among time series. Especially in neuroscience, understanding the causal interactions between brain regions is of primary importance. A family of measures have been developed from the parametric implementation of the Gran...
Autores principales: | Benozzo, Danilo, Jylänki, Pasi, Olivetti, Emanuele, Avesani, Paolo, van Gerven, Marcel A. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436686/ https://www.ncbi.nlm.nih.gov/pubmed/28545066 http://dx.doi.org/10.1371/journal.pone.0177359 |
Ejemplares similares
-
Supervised Estimation of Granger-Based Causality between Time Series
por: Benozzo, Danilo, et al.
Publicado: (2017) -
Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model
por: Olivetti, Emanuele, et al.
Publicado: (2018) -
Let’s Not Waste Time: Using Temporal Information in Clustered Activity Estimation with Spatial Adjacency Restrictions (CAESAR) for Parcellating FMRI Data
por: Janssen, Ronald J., et al.
Publicado: (2016) -
Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates
por: Hinne, Max, et al.
Publicado: (2015) -
Differential Effects of Brain Disorders on Structural and Functional Connectivity
por: Vega-Pons, Sandro, et al.
Publicado: (2017)