Cargando…
Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage
BACKGROUND: Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. OBJECTIVE: The aim of this study was to determine the genotoxicity and the mechan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436899/ https://www.ncbi.nlm.nih.gov/pubmed/28542301 http://dx.doi.org/10.1371/journal.pone.0177780 |
_version_ | 1783237493476294656 |
---|---|
author | Ganapathy, Vengatesh Manyanga, Jimmy Brame, Lacy McGuire, Dehra Sadhasivam, Balaji Floyd, Evan Rubenstein, David A. Ramachandran, Ilangovan Wagener, Theodore Queimado, Lurdes |
author_facet | Ganapathy, Vengatesh Manyanga, Jimmy Brame, Lacy McGuire, Dehra Sadhasivam, Balaji Floyd, Evan Rubenstein, David A. Ramachandran, Ilangovan Wagener, Theodore Queimado, Lurdes |
author_sort | Ganapathy, Vengatesh |
collection | PubMed |
description | BACKGROUND: Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. OBJECTIVE: The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. METHODS: Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. RESULTS: EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. CONCLUSIONS: Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. |
format | Online Article Text |
id | pubmed-5436899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54368992017-05-27 Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage Ganapathy, Vengatesh Manyanga, Jimmy Brame, Lacy McGuire, Dehra Sadhasivam, Balaji Floyd, Evan Rubenstein, David A. Ramachandran, Ilangovan Wagener, Theodore Queimado, Lurdes PLoS One Research Article BACKGROUND: Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. OBJECTIVE: The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. METHODS: Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. RESULTS: EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. CONCLUSIONS: Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. Public Library of Science 2017-05-18 /pmc/articles/PMC5436899/ /pubmed/28542301 http://dx.doi.org/10.1371/journal.pone.0177780 Text en © 2017 Ganapathy et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ganapathy, Vengatesh Manyanga, Jimmy Brame, Lacy McGuire, Dehra Sadhasivam, Balaji Floyd, Evan Rubenstein, David A. Ramachandran, Ilangovan Wagener, Theodore Queimado, Lurdes Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage |
title | Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage |
title_full | Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage |
title_fullStr | Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage |
title_full_unstemmed | Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage |
title_short | Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage |
title_sort | electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative dna damage |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436899/ https://www.ncbi.nlm.nih.gov/pubmed/28542301 http://dx.doi.org/10.1371/journal.pone.0177780 |
work_keys_str_mv | AT ganapathyvengatesh electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT manyangajimmy electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT bramelacy electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT mcguiredehra electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT sadhasivambalaji electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT floydevan electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT rubensteindavida electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT ramachandranilangovan electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT wagenertheodore electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage AT queimadolurdes electroniccigaretteaerosolssuppresscellularantioxidantdefensesandinducesignificantoxidativednadamage |